LightBend $^{\text {TM }}$ Mini $1 \times 1,1 \times 2,2 \times 2$ Bypass Fiber Optic Switch

(Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

Features

- Unmatched Low Cost
- Low Optical Distortions
- Low Cross Talk
- High Reliability
- Epoxy-Free Optical Path

Applications

- Channel Blocking
- Configurable Add/Drop
- System Monitoring
- Instrumentation

The LB Series miniature fiber optic switch connects optical channels by redirecting incoming optical signals into selected output fibers, in 1x1, 1x2 and 2×2 (bypass) configurations. This is achieved using a patent pending opto-mechanical configuration and activated via an electrical control signal. Latching operation preserves the selected optical path after the drive signal has been removed. The switch has integrated status contacts to provide an electrical readout of switch position. The new material based advanced design significantly reduces moving part position sensitivity, offering unprecedented high stability as well as an unmatched low cost. It is designed for use in reconfigurable OADM, optical crossconnect system and network switching for fault protection applications. Electronic driver is available for this series of switches. The switch is bidirectional.

We offer tight-bend-fiber version, which reduces the minimum bending radius from normal 15 mm to 7 mm . This feature enables smaller overall foot print.

Specifications

Parameter		Min	Typical	Max	Unit
Operation Wavelength		850	$\begin{gathered} 1260 \sim 1360 \\ \text { and/or } \\ 1510^{\sim} 1620 \end{gathered}$		nm
Insertion Loss ${ }^{[1]}$			0.5	1.0	dB
Wavelength Dependent Loss	SW ${ }^{[2]}$			0.15	
	DW ${ }^{[3]}$			0.25	dB
Temperature Dependent Loss			0.15	0.4	dB
Polarization Dependent Loss				0.1	dB
Return Loss		55			dB
Cross Talk		55			dB
Switching Time			3	10	ms
Repeatability				± 0.02	dB
Durability		10^{7}			Cycle
Operating Voltage		4.5	5	6	VDC
Operating Current			30	60	mA
Switching Type		Latching or Non-Latching			
Operating Temperature		-5		+70	
		-40		+85	${ }^{\circ}$
Optical Power Handling			300	500*	mW
Storage Temperature		-40		+85	${ }^{\circ} \mathrm{C}$

Notes

[1]. Exclude connectors.
[2]. SW: Single window.
[3]. DW: Dual window.

* Continuous operation, for pulse operation call

Warning: This device must use the reference circuit to driver otherwise it is unstable.

[^0]
(Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

DATASHEET

Mechanical Dimensions (Unit: mm)

Port 1 (Red)
Port 2 (White)
Port 3 (Green)
Port 4 (Blue)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Electrical Connector Configurations

The load is a resistive coil which is activated by applying 5 V (draw $\sim 40 \mathrm{~mA}$). However, the current flow direction must be correct otherwise it will cancel the permanent magnet inside causing instability. We strongly recommend to use the reference circuit to avoid major issues. We offer pushbutton elevation driver for verifications or convenient income inspection.
Latching Type
Application Note: Applying a constant driving voltage increases stability. The switches can also be driven by a pulse mode using Agiltron recommended circuit for energy saving.

LB Mini 1x2 Switch

Optic Path	Electric Drive		Status Sensor						
	Pin 1	Pin 10	Pin 5	Pin 6	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9	
Port 1 \rightarrow Port 2	0	5 V	N/A	N/A	Close	Open	Open	Close	
Port 1 \rightarrow Port 3	5 V	0	N/A	N/A	Open	Close	Close	Open	

LB Mini 2x2 Bypass Switch

Optic Path	Electric Drive		Status Sensor						
	Pin 1	Pin 10	Pin 5	Pin 6	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9	
Port 1 \rightarrow Port 2 Port 4 \rightarrow Port 3	0	5 V	N/A	N/A	Close	Open	Open	Close	
Port 1 \rightarrow Port 3	5 V	0	N/A	N/A	Open	Close	Close	Open	

Non-Latching Type

LB Mini 1x2 Switch

Optic Path	Electric Drive		Status Sensor					
	Pin 1	Pin 10	Pin 5	Pin 6	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9
Port 1 \rightarrow Port 2	No Power		N/A	N/A	Close	Open	Open	Close
Port 1 \rightarrow Port 3	5 V	0	N/A	N/A	Open	Close	Close	Open

LB Mini 2x2 Bypass Switch

Optic Path	Electric Drive		Status Sensor						
	Pin 1	Pin 10	Pin 5	Pin 6	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9	
Port 1 \rightarrow Port 2 Port 4 \rightarrow Port 3	No Power		N/A	N/A	Close	Open	Open	Close	
Port 1 \rightarrow Port 3	$5 V$	0	N/A	N/A	Open	Close	Close	Open	

(Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

DATASHEET

Functional Diagram

LB 1×1 Switch

LB 1x2 Switch

Ordering Information

	$\square \square$	\square						
Prefix	Type	Wavelength	Switch	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
LBSW-	$\begin{aligned} & 1 \times 1 \text { Latching }=11 \\ & 1 \times 1 \mathrm{~N} / \mathrm{T}^{[1]}=1 \mathrm{~T} \\ & 1 \times 1 \mathrm{~N} / \mathrm{D}^{[2]}=1 \mathrm{D} \\ & 1 \times 2=12 \\ & 2 \times 1=21 \\ & 2 \times 2 \text { Bypass }=22 \\ & \text { Special }=00 \end{aligned}$	$\begin{aligned} & 1060=1 \\ & C+L=2 \\ & 1310=3 \\ & 1410=4 \\ & 1550=5 \\ & 650=6 \\ & 780=7 \\ & 850=8 \\ & 1310 \& 1550=9 \\ & 1260 \sim 1620=B \\ & \text { Special }=0 \end{aligned}$	Latching = 1 Non-latching $=2$	$\begin{aligned} & -5^{\sim}+70^{\circ} \mathrm{C}=7 \\ & -40^{\sim}+85^{\circ} \mathrm{C}=8 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { SMF-28 = } 1 \\ & \text { Corning XB }=2 \\ & \text { Draka BBE }=3 \\ & \text { Special }=0 \end{aligned}$	Bare fiber = 1 $900 \mu \mathrm{~m}$ loose tube $=3$ Special $=0$	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { None }=1 \\ \text { FC/PC=2 } \\ \text { FC/APC=3 } \\ \text { SC/PC=4 } \\ \text { SC/APC=5 } \\ \text { ST/PC=6 } \\ \text { LC/PC }=7 \\ \text { Duplex LC/PC }=8 \\ \text { LC/UPC }=U \\ \text { Special }=0 \end{array}$

[1]. N/T: LB 1x1 Non-Latching Switch, Normally Transparence.
[2]. N/D: LB 1×1 Non-Latching Switch Normally Dark.

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters ($<5 \mu \mathrm{~m}$) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550 nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650 nm . We produce a special version to increase the how handling by expanding the core side at the fiber ends.

(Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

DATASHEET

Driver Reference Design

[^0]: Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.
 Rev 12/23/23

