LightBend ${ }^{\text {TM }}$ Mini 1x4 MM OptoMechanical Fiberoptic Switch (Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

Features

- Unmatched Low Cost
- Low Optical Distortions
- High Isolation
- High Reliability
- Epoxy-Free Optical Path

Product Description

The LB Series Mini 1x4 MM fiber optic switch connects optical channels by redirecting an incoming optical signal into a selected output fiber. This is achieved by using a patented opto-mechanical configuration activated via an electrical control signal. Latching operation preserves the selected optical path after the drive signal has been removed. The switch has integrated electrical position sensors, and the new material based advanced design significantly reduces moving part position sensitivity, offering unprecedented high stability and longevity, as well as an unmatched low cost. Electrical driver is also available. The switch is bidirectional.
We offer tight-bend-fiber version, which reduces the minimum bending radius from normal 15 mm to 7 mm . This feature enables smaller overall foot print.

Performance Specifications

LB Series Mini 1x4 MM Switch	Min	Typical	Max	Unit
Operation Wavelength	820~880, 1260~1360			nm
Insertion Loss ${ }^{1,2}$		0.5	1.0	dB
Wavelength Dependent Loss		0.15	0.3	dB
Polarization Dependent Loss		0.1	0.15	dB
Return Loss	35			dB
Cross Talk	50			dB
Switching Time		3	10	ms
Repeatability			± 0.05	dB
Operating Voltage	4.5	5	6	VDC
perating Current ${ }^{3}$ Latching			26	mA
Non-Latching			36	
Switching Type	Latching / Non-Latching			
Operating Temperature ${ }^{4}$	-5		70	${ }^{\circ} \mathrm{C}$
Optical Power Handling		300	500	mW
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$
Fiber Type	MM 50/125, MM 62.5/125			
Package Dimension	$35 \mathrm{~L} \times 23 \mathrm{~W} \times 10 \mathrm{H}$			mm

Note:

1. Exclude connectors, higher loss for Dual and Broad Band.
2. Measured using laser with coupled power ratio 5 (CPR). Laser with larger mode fill ratio needs special version.
3. Tested at 5V DC for each coil actuation.
4. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ is also available.

Applications

- Channel Blocking
- Configurable Add/Drop
- System Monitoring
- Instrumentation

LightBend ${ }^{\text {TM }}$ Mini 1x4 MM
 OptoMechanical Fiberoptic Switch

Electrical Driving Requirement

The load is a resistive coil which is activated by applying 5 V (draw $\sim 40 \mathrm{~mA}$). Applying too long pulse for the latching version will heat up the device. Agiltron offers a computer control kit with TTL and RS232 interfaces and Windows ${ }^{\top}$ GUI

Latching Type
Application Note: Applying a constant driving voltage increases stability. The switches can also be driven by a pulse mode using Agiltron recommended circuit for energy saving.

Optical Path	Relay	Electrical Drive		Status Sensor			
		Pin 1	Pin 8	Pin 2-3	Pin 3-4	Pin 5-6	Pin 6-7
Input \rightarrow Port 1	Relay1	5V	GND	Open	Close	Close	Open
	Relay 2, 3	N/A	N/A				
Input \rightarrow Port 2	Relay1	GND	5 V	Close	Open	Open	Close
	Relay 2	5 V	GND	Open	Close	Close	Open
	Relay 3	N/A	N/A				
Input \rightarrow Port 3	Relay1, 2	GND	5 V	Close	Open	Open	Close
	Relay 3	5 V	GND	Open	Close	Close	Open
Input \rightarrow Port 4	Relay1, 2, 3	GND	5V Pulse	Close	Open	Open	Close

Non-Latching Type

Optical Path	Relay	Electrical Drive		Status Sensor			
		Pin 1	Pin 8	Pin 2-3	Pin 3-4	Pin 5-6	Pin 6-7
Input \rightarrow Port 1	Relay 1	5V	GND	Open	Close	Close	Open
	Relay 2, 3	No Power		Close	Open	Open	Close
Input \rightarrow Port 2	Relay 2	5V	GND	Open	Close	Close	Open
	Relay 1, 3	No Power		Close	Open	Open	Close
Input \rightarrow Port 3	Relay 3	5V	GND	Open	Close	Close	Open
	Relay 1, 2	No Power		Close	Open	Open	Close
Input \rightarrow Port 4	Relay1, 2, 3	No Power		Close	Open	Open	Close

Mechanical Dimensions (Unit: mm)

Ordering Information

LBMM-	$\square \square$		\square	\square	\square	\square	\square	\square
	Type	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & 1 \times 4=14 \\ & 4 \times 1=41 \\ & \text { Special }=00 \end{aligned}$	$1060=1$ $C+L=2$ $1310=3$ $1410=4$ $1550=5$ $650=6$ $780=7$ $850=8$ $1310 \& 1550=9$ Special $=0$	Latch=1 Non-latch=2 Special=0	Standard=1 Special=0	$\begin{aligned} & \hline 50 / 125=5 \\ & 62.5 / 125=6 \\ & \text { Tightbend }=2 \\ & \text { Special }=0 \end{aligned}$	Bare fiber=1 900um tube=3 Special=0		None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC $/$ APC $=5$ ST/PC=6 LC=7 Duplex LC=8 Special=0

