LightBend ${ }^{T M}$ Dual 1x1
Single-Mode Fiberoptic Switch (Bidirectional)
(Protected by U.S. patent 6823102 and pending patents)
Product Description
The LB Series Dual 1×1 fiberoptic switch connects optical channels by redirecting an incoming optical signal into a selected output fiber. This is achieved using a patent pending opto-mechanical configuration and activated via an electrical control signal. Latching operation preserves the selected optical path after the driver signal has been removed. The switch has integrated electrical position sensors. The new material-based advanced design significantly reduces moving part position sensitivity, offering unprecedented high stability as well as an unmatched low cost. Electronic driver is available for this series of switches. The switch is bidirectional.

We offer tight-bend-fiber version, which reduces the minimum bending radius from normal 15 mm to 7 mm . This feature enables smaller overall foot print.

Performance Specifications

Notes:
${ }^{1}$ 1. 23° over operating wavelength and all SOP.
${ }^{2}$. Excluding Connectors.
${ }^{3 .}$ DW: Dual band and Broad band.

* Continuous operation, for pulse operation call

Revision: 060-12 02-10-16

15 Presidential Way, Woburn, MA 01801 Tel: (781) 935-1200 Fax: (781) 935-2040
www.agiltron.com

LightBend ${ }^{\text {TM }}$ Dual 1×1 Single-Mode Fiberoptic Switch

Mechanical Dimensions (Unit:mm)

Electrical Connector Configurations

The load is a resistive coil which is activated by applying 5V (draw ~ 40mA). Applying too long pulse for the latching version will heat up the device. Agiltron offers a computer control kit with TTL and USB interfaces and Windows ${ }^{\text {TM }}$ GUI. We also offer RS232 interface as an option - please contact Agiltron sales.

Latching Type

Optical Path	Electric Drive		Status Sensor			
	Pin 1	Pin 10	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9
$1 \rightarrow 1^{\prime}, 2 \rightarrow 2^{\prime}$	GND	5 V Pulse	Close	Open	Open	Close
Block	5 V Pulse	GND	Open	Close	Close	Open

Non-Latching Type

Optical Path	Electric Drive		Status Sensor			
	Pin 1	Pin 10	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9
$1 \rightarrow 1^{\prime}, 2 \rightarrow 2^{\prime}$	No Power		Close	Open	Open	Close
Block	5 V	GND	Open	Close	Close	Open

Functional Diagram

LB Dual 1x1 Switch

Ordering Information

LBDU-	$\square \square$	\square	\square	\square	\square	\square		
	Type	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & 1 \times 1 \text { Latching }=11 \\ & 1 \times 1 \mathrm{~N} / \mathrm{O}^{*}=10 \\ & 1 \times 1 \mathrm{~N} / \mathrm{C}^{* *}=1 \mathrm{C} \\ & \text { Special=00 } \end{aligned}$	$1060=1$ $C+L=2$ $1310=3$ $1410=4$ $1550=5$ $650=6$ $780=7$ $850=8$ $1130 \& 1550=9$ $1260 \sim 1620=B$ Special $=0$	Latching Type $=1$ Non-latching Type=2 Special=0	Standard=1 Special=0	SMF-28=1 Corning XB=2 Draka BBE=3 Special=0	Bare fiber=1 900um tube $=3$ Special $=0$	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0 \mathrm{~m}=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC=7 Duplex LC=8 Special $=0$ Special=0

[^0]** N/C: LB Dual 1×1 Switch Non-Latching normally close.

[^0]: N/O: LB Dual 1×1 Switch Non-Latching normally open.

