LightBend ${ }^{T M}$ Octo 1×1 Single Mode Fiberoptic Switch (Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

Product Description

The LB Series Octo 1×1 single mode OptoMechanical Fiberoptic switch integrated 8 simultaneously activated 1×1 switches in a single compact format. The device connects optical channels by redirecting incoming optical signals into selected output fibers. This is achieved using a patented opto-mechanical configuration and activated via an electrical control signal. Latching operation preserves the selected optical path after the drive signal has been removed. The switch has integrated electrical position sensors. This novel design significantly reduces moving part position sensitivity, offering unprecedented high stability as well as an unmatched low cost. The switch is bidirectional.
We offer tight-bend-fiber version, which reduces the minimum bending radius from normal 15 mm to 7 mm . This feature enables smaller overall foot print.

Performance Specifications

LB Series Octo 1x1 Switch	Min	Typical	Max	Unit
Operation Wavelength	Single Band	1260~1360 or	10~1620	nm
	Dual Band	1260~1360 an	510~1620	
	Broad Band	1260~1620		
Insertion Loss ${ }^{1,2}$		0.6	1.0	dB
Wavelength Dependent Loss		0.15	0.35(DW ${ }^{3}$)	dB
Polarization Dependent Loss			0.1	dB
Return Loss ${ }^{1,2}$	55			dB
Cross Talk ${ }^{1,2}$	55			dB
Switching Time		3	10	ms
Repeatability			± 0.02	dB
Durability	10^{7}			Cycle
Operating Voltage	4.5	5	6	VDC
Operating Current		30	60	mA
Voltage Pulse Width (Latching)		20		mS
Switching Type	Latching/Non-Latching			
Operating Temperature	-5		70	${ }^{\circ} \mathrm{C}$
Optical Power Handling ${ }^{4}$		300	500	mW
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$
Package Dimension	$28.0 \mathrm{~L} \times 27.0 \mathrm{~W} \times 8.0 \mathrm{H}$			mm
Notes: 1. $23^{\circ} \mathrm{C}$ over operating wavelengt 2. Excluding Connectors. 3. DW: Dual and Broad Band. 4. Continuous operation, for pulse	and all SOP operation cal			

15 Presidential Way, Woburn, MA 01801 Tel: (781) 935-1200 Fax: (781) 935-2040 www.agiltron.com

LightBend ${ }^{\text {TM }}$ Octo 1×1 Single Mode Fiberoptic Switch

Mechanical Dimensions (Unit:mm)

Electrical Driving Requirements

The load is a resistive coil which is activated by applying 5V (draw $\sim 40 \mathrm{~mA}$). Applying too long pulse for the latching version will heat up the device. Agiltron offers a computer control kit with TTL and USB interfaces and Windows $^{\top M}$ GUI. We also offer RS232 interface as an option - please contact Agiltron sales.

Latching Type

Optical Path	Electric Drive		Status Sensor			
	Pin 1	Pin 8	Pin 2-3	Pin 3-4	Pin 5-6	Pin 6-7
$1 \rightarrow 1^{\prime}, 2 \rightarrow 2^{\prime}$ $3 \rightarrow 3^{\prime}, 4 \rightarrow 4^{\prime}$ $5 \rightarrow 5^{\prime}, 6 \rightarrow 6^{\prime}$ $7 \rightarrow 7^{\prime}, 8 \rightarrow 8^{\prime}$	GND	5V Pulse	Close	Open	Open	Close
Block	5V Pulse	GND	Open	Close	Close	Open

Non-Latching Type

Optical Path	Electric Drive		Status Sensor			
	Pin 1	Pin 8	Pin 2-3	Pin 3-4	Pin 5-6	Pin 6-7
$\begin{aligned} & 1 \rightarrow 1^{\prime}, 2 \rightarrow 2 \\ & 3 \rightarrow 3^{\prime}, 4 \rightarrow 4 \\ & 5 \rightarrow 5, \\ & 7 \rightarrow 7^{\prime}, 8 \rightarrow 8^{\prime} \\ & 7 \end{aligned}$	No Power		Close	Open	Open	Close
Block	5 V	GND	Open	Close	Close	Open

Functional Diagram

Ordering Information

LBOC-		\square	\square		\square	\square		\square
	Type	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & 1 \times 1 \text { Latching }=11 \\ & 1 \times 1 \mathrm{~N} / \mathrm{O}^{*}=10 \\ & 1 \times 1 \mathrm{~N} / \mathrm{C}^{* *}=1 \mathrm{C} \\ & \text { Special= } 00 \end{aligned}$	$1060=1$ $C+L=2$ $1310=3$ $1410=4$ $1550=5$ $650=6$ $780=7$ $850=8$ $1310 \& 1550=9$ $1260 \sim 1620=B$ Special $=0$	Latching=1 Non-Latching=2 Special=0	Standard=1 Special=0	$\begin{aligned} & \text { SFM-28=1 } \\ & \text { Corning XB=2 } \\ & \text { Draka BBE=3 } \\ & \text { Special=0 } \end{aligned}$	Bare fiber=1 900um tube=3 Special=0	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0 \mathrm{~m}=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC=7 Duplex LC=8 Special=0

[^0]
[^0]: * N/O: LB Octo 1x1 MM Switch Non-Latching normally open.
 ** N/C: LB Octo 1x1 MM Switch Non-Latching normally close.

