

LightBend ${ }^{\text {TM }} 1 \times 2$ PM OptoMechanical Fiberoptic Switch
 (Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

Product Description

The LB series 1×2 PM fiber optic switch is a polarization-maintaining fiber switch, which connects optical channels by directing or blocking an incoming optical signal into the output fiber. This is achieved using a patent pending opto-machnical configuration and achieved via an electrical control signal. A latching version preserves the selected optical path after the drive signal has been removed, while the nonlatching version defaults to either the open or close state when power is removed. The switches integrated electrical position sensors. The new material-based advanced design significantly reduces moving part position sensitivity, offering unprecedented high stability as well as an unmatched low cost. Electronic driver is available for this series of switches. The switch is bidirectional.

Applications

- Fault Protection
- Channel Add/Drop
- Channel Switching
- Instrumentation

Performance Specification

LB Series 1x2 PM Switch	Min	Typical	Max	Unit
Operation Wavelength	780,	060, 126	1510~1610	nm
Insertion Loss ${ }^{[1]}$		0.9	1.3	dB
Extinction Dependent Loss ${ }^{[1]}$	18			dB
Return Loss ${ }^{[1],}{ }^{\text {[2] }}$	55			dB
Cross Talk ${ }^{[1]}$	50			dB
Switching Time		3	10	ms
Repeatability			± 0.05	dB
Durability	10^{7}			Cycle
Operating Voltage	4.5	5	6	VDC
Operating Current		30	60	mA
Voltage Pulse Width (Latching)	12	20		ms
Switching Type	Latching / Non Latching			
Operating Temperature	-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$
Optical Power Handling		300	500	mW
Fiber Type	Panda 400, Panda 250			
Note: [1]. Exclude connectors. [2]. $-40 \sim+85^{\circ} \mathrm{C}$ is also available				

LightBend ${ }^{\text {TM }} 1 \times 2$ PM
 OptoMechanical Fiberoptic Switch

Mechanical Dimensions (Unit: mm)

Electrical Driving Requirements

The load is a resistive coil which is activated by applying 5 V (draw $\sim 40 \mathrm{~mA}$). Applying too long pulse for the latching version will heat up the device. Agiltron offers a computer control kit with TTL and USB interfaces and Windows ${ }^{\top M}$ GUI. We also offer RS232 interface as an option - please contact Agiltron sales.

Latching Type

Optical Path	Electrical Drive				Status Sensor			
	Pin 1	Pin 10	Pin 5	Pin 6	Pin2-3	Pin3-4	Pin7-8	Pin 8-9
Input \rightarrow Port 1	5V Pulse	GND	N/A	N/A	Open	Close	Close	Open
Input \rightarrow Port 2	GND	5V Pulse	N/A	N/A	Close	Open	Open	Close

Non-Latching Type

Optical Path	Electrical Drive				Status Sensor			
	Pin 1	Pin 10	Pin 5	Pin 6	Pin2-3	Pin3-4	Pin7-8	Pin 8-9
Input \rightarrow Port 1	5 V	GND	N/A	N/A	Open	Close	Close	Open
Input \rightarrow Port 2	No Power			N/A	N/A	Close	Open	Open

Ordering Information

LBPM-	\square							
	Type	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & \hline 1 \times 2=12 \\ & 2 \times 1=21 \\ & \text { Special }=00 \end{aligned}$	$\begin{aligned} & \hline 1060=1 \\ & 1310=3 \\ & 1550=5 \\ & 780=7 \\ & 850=8 \\ & 980=9 \\ & \text { Special }=0 \end{aligned}$	Latching=1 Non-latching=2	Standard=4 Special=0	Panda 400=A Panda 250=B Special=0	Bare fiber=1 900 urn tube $=3$ Special=0	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/PC=2 FC/ APC= $=3$ SC/PC=4 $\mathrm{SC} / \mathrm{APC}=5$ ST/PC=6 LC=7 Duplex LC=8 Special=0

