Manual Grating-Based Fiber Optic Tunable Filter AGILTRON

(patent pending)

DATASHEET

Agiltron's Manual Grating-Based Fiber Optic Tunable Filter provides a simple way to adjust the center wavelength of narrow band over wide band. Wavelength tuning is achieved by rotating a grating using a micrometer.

Based on a proprietary optics, Agiltron offers extremely low insertion loss, high stability, polarization independent operation, and high off-band suppression. It is tunable continuously over a wide spectral range. The device presents a most costeffective solution for OEM applications from fiber optic networks to fiber sensing interrogation.

Features

- Extremely low insertion loss
- Wide Tune Range
- High off-band suppression
- Uniform bandwidth
- High tuning resolution
- Compact and cost-effective

Applications

- DWDM networks
- Fiber Sensing
- ASE control
- Tunable Fiber Lasers

Specifications

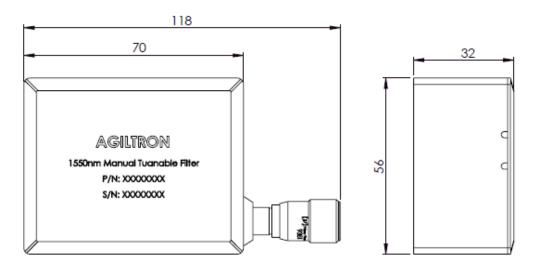
Paramete	er	Min	Typical	Max	Unit
Wavelength Tuning Range		1060±15	1500±20	2000±20	nm
Tuning Resolution		-	0.02	-	nm
Insertion Loss ^[1]	B-Grade	1.1	2.1	3.5	dB
IIISEI LIOIT LOSS 1-1	A-Grade	1.1	1.6	2	dB
Bandwidth @-3dB		0.25		0.30	nm
Bandwidth @-20dB		-	0.8	-	nm
Polarization Dependent Loss		-	0.25	-	dB
Extinction Ratio (PM fiber only)		-	20	-	dB
Off-Band Suppression		-	45	-	dB
Polarization Mode Dispersion		-	-	0.5	ps
Return Loss		40	-	-	dB
Optical Power Handling	(CW)	-	-	500	mW
Operating Temperature		0	20	60	°C
Storage Temperature		-10		70	°C
Dimension			mm		

Notes:

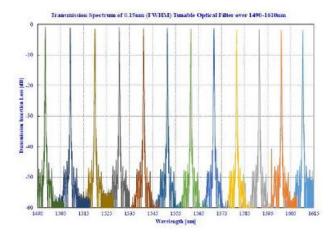
[1]. Measured using a broadband light source with the integration of the transmission peak. If the laser source does not match the filter profile, an extra loss can occur. A special filter can be made to match the application. The smaller the fiber core, the higher the loss. Excluding connector loss. The connector adds 0.25dB each

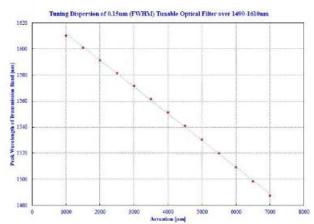
Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. Agiltron, The Power to Transform and Agiltron logo are trademarks of Photonwares Corporation. © 2009, 2012 IPG Photonics Corporation. All rights reserved.

Manual Grating-Based Fiber Optic Tunable Filter AGILTRON



(patent pending)

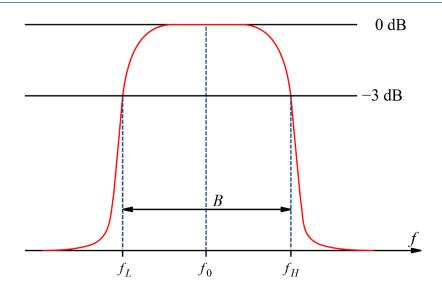

DATASHEET


Mechanical Dimension (mm)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Spectrum

Manual Grating-Based Fiber Optic Tunable Filter AGILTRON



(patent pending)

DATASHEET

Bandwidth Definition

Ordering Information

	0 4							
Prefix		Wavelength	Power	Туре	Fiber Type	Fiber Cover	Fiber Length	Connector
FOTF-		1060nm = 1 1310nm = 3 1550nm = 5 1600nm = 6 2000nm = 2	Regular = 1 5W = 5 Special = 0	B-grade* = 1 A-grade** = 2	SMF-28 = 1 PM1550 = 5	900um tube = 3 Special = 0	0.25m = 1 0.5m = 2 1.0 m = 3 Special = 0	None = 1 FC/PC = 2 FC/APC = 3 SC/PC = 4 SC/APC = 5 ST/PC = 6 LC/PC = 7 Special = 0

^{*} B-grade <3.5dB

How to test the insertion loss of a tunable optical filter

The filter only works in a specific range. Beyond this range, extra peaks may show. These peaks can be blocked with special order. Please follow these instructions to do an optical insertion loss test:

- 1. Connect a broadband fiber-coupled laser source to OSA, sweep one time over the specified range of the tunable filter, and then fix the curve in Trace A as a reference.
- 2. Connect the broadband laser source to the fiberoptic tunable filter fiber as input, then connect the other fiber port of the tunable filter as the output to the OSA.
- 3. Set OSA Trace B as 'write,' Trace C as 'Calculate: B-A.' Auto sweep Trace C from the specific range. Tune the micrometer to shift the peak at a different wavelength. Use 'Peak search' to record IL at a different wavelength."

^{**} A-grade <2.0dB